
Improving the Performance of MPI Derived Datatypes

William D. Gropp, Ewing Lusk, and Debbie Swider
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, Illinois 60439

Abstract

The Message Passing Interface (MPI) standard provides
a powerful mechanism for describing non-contiguousmem-
ory locations: derived datatypes. In addition, MPI de-
rived datatypes have a key role in the MPI-2 I/O opera-
tions. In principle, MPI derived datatypes allow a user to
more efficiently communicate noncontiguous data (for ex-
ample, strided data) because the MPI implementation can
move the data without any intermediate copies to or from a
contiguous buffer. In practice, however, few MPI implemen-
tations provide support for datatypes that performs better
than what the user can achieve by manually packing and
unpacking the data into contiguous buffers before calling
MPI routines with contiguous memory regions. We develop
a taxonomy of MPI datatypes according to their memory
reference patterns and show how to efficiently implement
these patterns. The effectiveness of this approach is illus-
trated on a variety of platforms.

1 Introduction

The Message Passing Interface (MPI) standard [4,
1] provides a powerful and general way of describ-
ing arbitrary collections of data in memory. Special
cases allow users to easily define common cases such
as strided data (MPI Type vector) and indexed data
(MPI Type indexed). Careful modification of the ex-
tent of a datatype provides additional ways to describe reg-
ular patterns in memory. Such concise and powerful de-
scriptions are necessary to eliminate unnecessary memory
motion; without them, the user must copy any data to be
sent to a contiguous buffer, pass that to the send routine,
and then unpack the data when it is received. In principle,
the use of derived datatypes allows the MPI implementation
to provide superior performance over what the user could

This work was supported byt the Mathematical, Information, and
Computational Sciences Division subprogram of the Office of Computa-
tional and Technology Research, U.S. Department of Energy, under Con-
tract W-31-109-Eng-38.

achieve if messages could only contain contiguous regions
of memory. Unfortunately, the performance of programs
using MPI datatypes is often poor compared to just letting
the user pack and unpack the data. This paper shows how
the performance of MPI derived datatypes can be improved
by recognizing and optimizing for regular patterns in MPI
datatypes.
A number of requirements for processing MPI datatypes

must be kept in mind while designing a faster approach. In-
side an MPI implementation, large messages are normally
broken into smaller pieces; for example, they may be bro-
ken into packets with a fixed maximum size or there may be
a limit on the maximummessage size that can be sent at one
time. The ability to break up long messages is also required
for the efficient implementation of some collective opera-
tions. Thus, one critical requirement is that it must be pos-
sible to start and stop the processing of a datatype at nearly
arbitrary points. In addition, the design should be modular
enough that other MPI vendors can adopt its good features
without extensive redesign of their implementations.
Another requirement is a practical one: the new ap-

proach must have a small number of cases so as to
not be too complicated to implement or maintain. It
should efficiently handle common datatypes and patterns
of access, as well as common data alignments. Fi-
nally, it must handle both the MPI-1 and MPI-2 data-
types; this includes MPI Type create resized and
MPI Type create darray.
In the rest of this paper, we shall assume that we are

implementing datatypes for a parallel machine with a sin-
gle data representation; this allows us to view all data as
MPI BYTE and to ignore data conversion issues. Many
of the techniques described in this paper can be applied
to the heterogenous case, but restricting the discussion to
MPI BYTE both simplifies some issues and provides im-
portant opportunities for additional optimizations.
The approach taken in this paper is based on observ-

ing that MPI datatypes require only a small number of data
movement primitives, and that these primitives include not
only a block copy (e.g., memcpy), but also a small collec-

tion of loops that contain block copies and pointer offset
operations. Several MPI datatypes may map onto the same
primitives. By optimizing for these loops, significant per-
formance improvements in the processing of MPI datatypes
can be achieved.
In Section 2 we show the performance of datatypes on a

variety of MPI implementations, both MPICH and vendor-
optimized, and compare with user-packing/unpacking that
does not use the MPI derived datatypes. These results
demonstrate both that current implementations can be im-
proved and that the MPI Type vector optimization in
MPICH, which this paper generalizes, provides a significant
performance improvement. In Section 3 we introduce the
basic loops out of which the MPI derived datatypes can be
built. In Section 4 we discuss some of the implementation
issues. Section 5 measures the effect of the new approach.

2 Performance of MPI Datatypes

We can see the need for an improvement in the perfor-
mance of MPI datatypes by testing the performance of two
different representations of a vector and compare them to
having the user pack and unpack the vector into contiguous
memory. Table 1 shows the results of using

MPI_Type_vector(1000, 1, 24,
MPI_DOUBLE,
&newtype);

MPI_Type_commit(&newtype);
MPI_Send(buf, 1, newtype, ...);

as “Vector,”

MPI_Datatype t[2];
MPI_Aint offset[2];
int blen[2];
offset[0] = 0;
t[0] = MPI_DOUBLE; blen[0] = 1;
offset[1] = sizeof(double)*24;
t[1] = MPI_UB; blen[1] = 1;
MPI_Type_struct(2, blen, offset, t,

&newtype);
MPI_Type_commit(&newtype);
MPI_Send(buf, 1000, newtype, ...);

as “Struct,”, and

double tmp[1000]; int i;
for (i=0; i<1000; i++)

tmp[i] = buf[24*i];
MPI_Send(tmp, 1000, MPI_DOUBLE,

...);

as “User.” Note that for these systems, it is always more
efficient for the user to manually form a contiguous copy

of the data and send that than it is to use the MPI derived
datatypes. In the case of the more convenient struct form, it
is significantly better to avoid the MPI datatype.
Note that for the “vector” case, the portable MPICH im-

plementation [3] is faster than the vendor implementations
that were tested. MPICH handles MPI Type vector and
MPI Type hvector specially; the method used is a pro-
totype of the approach described in this paper.

3 Basic Memory Operations

An MPI derived datatype can be represented as a tree
whose nodes are other MPI derived datatypes and whose
leaves are MPI predefined datatypes. The datatype tree de-
scribes a series of memory move operations to be used in
moving data from or to a contiguous representation to or
from the layout described by the datatype tree. The obvi-
ous way to implement MPI datatypes is to build a routine
that recursively traverses this tree in a depth-first manner;
this is the approach taken by the MPICH implementation.
Other approaches are possible; for example, the MPI-F [2]
implementation builds a finite automaton representing the
operations in the datatype.
In this paper, we describe a finite automaton whose ba-

sic operations include three special loops; these loops rep-
resent all of the MPI derived datatypes. In essence, we are
replacing some subtrees of the datatype tree with special
optimized leaf nodes.
An alternate way of looking at this approach follows. For

efficiency, we need a compact compilation of the data move
instructions specified by the datatype. The key is to find an
efficient yet simple representation; because all uses of MPI
datatypes contain a repitition count, nested loops naturally
occur. A classic technique for improving the performance
of nested loops is to do loop merging or fusion (converting
several loops into one). Another common technique is to
replace general transitions (finite state machine or recursive
calls) with special, optimized steps (such as loops).
Let us first consider three basic operations and describe

how they relate to the MPI derived datatypes. To simplify
the discussion, we consider only the “pack” case (moving
data to a contiguous buffer by reading from data laid out
according to the MPI datatype). The unpack case is similar,
exchanging source and destination. The following subsec-
tions define the operatoin pack datatype.

3.1 Strided

The first operation is the strided copy. This is a block
move followed by an relative offset in the source. This is a
natural for MPI Type vector and for datatypes created
with the MPI-2 function MPI Type create resized

Table 1. Performance for several different ways of sending 1000 doubles separated by a stride of
24 doubles on three high-performance systems. Numbers are bandwidths in MB/sec. See text for
details.

System Vendor MPI MPICH (old) User (with vendor MPI)
Vector Struct Vector Struct

ASCI Blue Pacific IBM SP 3.8 2.9 6.7 1.0 9.5
ASCI Blue Mountain SGI Origin 2000 7.6 3.1 20 2.6 44
ASCI Red Intel TFLOPS 32 3.3 35

(in both cases when the underlying type is contigu-
ous). It is also important for datatypes created with
MPI Type struct and containing an MPI UB (the MPI-
1 method for accomplishing nearly the same effect as the
MPI-2 function MPI Type create resized). We use
memcpy to represent an optimized block-move operation;
in practice, an implementation may optimize for single
word moves or use any other technique that achieves high
copy rates. We also assume that the source of the data to be
moved is pointed at by base and the destination buffer is
pointed at by dest; these pointers are to byte-sized values.
In C terms, the operation is

src = base;
for (i=0; i<n; i++) {

memcpy(dest, src, len);
dest += len;
src += offset;
}

Note that in the general case where the input datatype
to MPI Type vector is not a contiguous datatype,
the memcpy operation may be replaced with a
pack datatype operation.
Note that an important part of the datatype operation,

setting the position for the next datatype to begin (based
on the extent of the datatype), is not included here. The
MPI Type vector and MPI Type create resized
cases differ here, and by making this final step separate, we
can unify these cases.

3.2 Variable Length Indexed

The next operation is the most general and moves blocks
of variable length from specific locations in memory. In C
terms, it is

for (i=0; i<n; i++) {
memcpy(dest,

base + offset[i],
len[i]);

dest += len[i];
}

where base is the buffer address in a routine such as
MPI Send (a typical value of base for these oper-
ations is MPI BOTTOM, of course). This implements
MPI Type indexed and MPI Type struct.

3.3 Fixed Length Indexed

An important special case (enshrined in the MPI-2 rou-
tine MPI Type create indexed block) has constant
lengths; its C code is

for (i=0; i<n; i++) {
memcpy(dest,

base + offset[i],
len);

dest += len;
}

This loop represents a gather operation.

3.4 Common Representation of Loops

In summary, there are three basic non-contiguous mem-
ory operations:

1. Fixed length block with offset relative to the previous
element

2. Variable length block with absolute offset

3. Fixed length block with absolute offset

The fourth combination, variable length block with relative
offset, does not occur in MPI.
These three loops are parameterized with the following

values:

looptype Which of the three loops

n Loop count (number of separate blocks to move)

len[] Length of each block (array of size n or scalar)

offset[] Offsets (array of size n or scalar)

isleaf Indicates whether move operation is memcpy or
pack datatype

extent Final extent

In the case where single words are moved, these loops
can be highly optimized; for example, taking advantage of
prefetch or non-blocking load instructions.
In addition, when working with complex, derived data-

types, we may also need either a pointer or array of pointers
to datatypes. That is, for non-leaf nodes in the tree rep-
resenting a derived datatype, the operation to apply in the
loops above is “pack datatype,” not “memcpy”, and we need
to know what that datatype is. In addition, we may need to
know a blockcount for the number of instances of a de-
rived datatype (in the leaf case, this information is combined
with the datatype’s length to compute the len value).

4 Grubby Details

In this section we briefly mention some of the issues in
obtaining an efficient implementation. None of these tech-
niques are new, and almost certainly are already in use in
many MPI implementations. We mention them to illustrate
the steps that must be taken to achieve high performance
with MPI datatypes. Not all of these are fully implemented
yet in MPICH .

4.1 Removing the outer loops

Perhaps the most awkward requirement is the one that
requires support for partial traversal of the datatype. This
means that implicit recursion cannot be used and must be
replacedwith an explicit stack representing the current loca-
tion of the operation within the datatype tree. In addition, it
must be possible to pause midway through any of the loops.
This is particularly difficult near the root of the tree, where
the datatypes are all MPI derived types. Because of this, all
of the outer loops (loops over the members of derived data-
types that are not the loops identified in Section 3) must be
replaced with the equivalent finite automaton, and the cur-
rent state of the loop becomes part of the state stack that is
used to stop and resume processing of a datatype.

4.2 Stack Overflow Tests

Stack overflow tests can be eliminated by placing them
in the type creation or type commit operations. This has the
advantage of detecting a datatype that is too complex at the
time the type is created rather than when it is used.

Note that the SGI implementation of MPI has a
type complexity environment variable MPI TYPE DEPTH,
though without a precise definition of what the limit refers
to.

4.3 Datatype Layout

The definition of the structure that is used internally in
the MPI implementation should be defined so that pushing
a datatype on the stack is simply a block copy of a portion of
the datatype structure. Further, this part of the datatype can
be arranged to be aligned on a cache line, allowing the use
of wide load and store instructions where available (e.g.,
double or quad load), reducing the number of instructions
required.

4.4 Pop/Push Optimization

The data movement patterns introduced in Section 3
optimize the lowest levels in the datatype tree, but ap-
ply only when data is actually being moved. An im-
portant case in MPI are vectors of vectors; for example,
describing a section of a 3-d array or using the MPI-2
MPI Type create darray. In this case, we will be
repeatedly pushing and popping intermediate nodes in the
datatype tree. For example, written as a loop, we might
have something like this:

for (i=0; i<n; i++) {
push(datatype, count, etc.);
do_operation(datatype);
pop;
src += offset;

}

We can optimize this loop in the obvious way by hoisting
the push/pop operations out of the loop:

push(datatype, count, etc.);
for (i=0; i<n; i++) {

do_operation(datatype)
update_stack_top;
src += offset;

}
pop;

where do operation applies the appropriate data move
operations. This is a general optimization that can be ap-
plied whenever only a single data move operation is speci-
fied inside the loop; this includes all MPI indexed and vector
descriptions, and some but not all struct descriptions.

Table 2. Performance for a resized datatype

MPICH SGI
Type Size Time MB/s Time MB/s
Struct 100 0.000056 14.2 0.000204 3.9
User 100 0.000041 19.7 0.000028 28.4
Struct 10000 0.0019 42.9 0.0117 6.8
User 10000 0.00133 60.3 0.00093 86.3

4.5 Taking Advantage of Known Alignment Re-
strictions

MPI Datatypes must have the same alignment as the
types in the language; i.e., if a double has eight-
byte alignment, then a data item corresponding to an
MPI DOUBLEmust also have eight-byte alignment. Taking
advantage of known data alignment is important; it allows
use of wider load and store instructions. Dynamically de-
tecting alignment is also possible, but hoisting this test out
of the loop is another important optimization.

4.6 Precompute Packetization

One reason that loops are not chosen as the basic opera-
tion is the need of manyMPI implementations to move only
as much data as will fit within a packet or memory buffer.
For systems with fixed-sized memory buffers, this can be
handled at the time that the datatype is committed; it is an-
other example of hoisting loop tests (like the stack overflow)
out of the loop when the datatype is created.
Another approach, suitable for relatively large buffers,

uses a test to check whether the entire loop fits within the
buffer; if not, slower but correct code can be used. Systems
with small packet sizes may want to consider using an inter-
mediate buffer of larger size to emulate what the user would
do without the MPI datatypes (which Section 2 shows to be
superior to most current implementations).

4.7 MPI-2 Datatype Representation

The MPI-2 standard requires that the original calling se-
quences used to create a derived datatype be retained. The
downside of converting all MPI derived datatypes to one of
the three loop forms is that a separate data structure must be
kept to maintain the information needed for theMPI-2 func-
tion MPI Type get contents (this is not necessary in
MPI-1).

5 Experiments

We illustrate the benefits of the datatype approach
of this paper with two experiements. In the first, we
send C doubles with a stride of 16 doubles using a
MPI Type struct containing an MPI DOUBLE and an
MPI UB. We compareMPICH against the SGI implementa-
tion ofMPI on an SGI Origin 2000with 250MHz R10000s.
The results are shown in Table 2. The rows labeled “Struct”
use the MPI derived datatype; the rows labeled “User” have
the program use a loop to pack and unpack the data to and
from a contiguous buffer. Note that the MPICH “struct”
case, while still slower than “user” case, is much faster than
the vendor’s “struct” case. Further, the current implementa-
tion of MPICH does not exploit the option of packing and
unpacking directly to and from the communication buffers;
instead it allocates a temporary buffer, moves the data into
that, and then sends that temporary buffer by copying it to
and from the communication buffers. Eliminating this extra
copy will improve the performance of MPICH.
The difference in the performance of the “User” rows

for MPICH and SGI are due to the greater performance of
contiguous send and receive in the SGI implementation of
MPI.
The second example illustrates the advantage of the

push/pop optimization. Consider the case of sending part
of the face of a 3-dimensional cube to another processor.
Specifically, let the cube have sizes (nx,ny,nz) and
the partial face that we want to send is a y-z face of size
(my,mz). To construct a datatype describing this face, we
need

MPI_Type_vector(my, 1, nx,
MPI_DOUBLE, &t1);

MPI_Type_hvector(mz, 1,
nx * ny * sizeof(double), t1,
&newtype);

The performance of this derived datatype on an SGI Origin
2000 is shown in Table 3. The cube is is
size and the face is . The MPICH row shows the
performance using the ideas in this paper (but still making
the extra copy described above). The SGI line shows the
performance of the SGI implementation of MPI. The third
row of data, labeled MPICH-old, shows the benefit of the
adding the push/pop optimization.

6 Conclusion

We have shown how to divide the many MPI datatypes
into a few categories that can be implemented efficiently.
Even though our results are preliminary, and do not include
all reasonable performance optimizations, we already pro-
vide performance with derived datatypes that is nearly as

Table 3. Performance for a vector of vectors
datatype

System Time MB/s
MPICH 0.0019 42.6
SGI 0.0066 12.2
MPICH-old 0.0031 26.0

good as what a programmer can do when packing and un-
packing contiguous buffers “by hand.” Further improve-
ments, particularly those that eliminate the extra copies that
packing into and out of a contiguous buffer require, should
raise the performance to equal or better than what the appli-
cation programmer can accomplish.

References

[1] Message Passing Interface Forum. MPI2: A message passing
interface standard. High Performance Computing Applica-
tions, 12(1–2):1–299, 1998.

[2] H. Franke, P. Hochschild, P. Pattnaik, J.-P. Prost, and M. Snir.
MPI-F: an MPI prototype implementation on IBM SP1. In
J. J. Dongarra and B. Tourancheau, editors, Environments and
Tools for Parallel Scientific Computing, pages 43–55. SIAM,
1994.

[3] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI message
passing interface standard. Parallel Computing, 22(6):789–
828, Sept. 1996.

[4] Message Passing Interface Forum. MPI: A message-passing
interface standard. International Journal of Supercomputer
Applications, 8(3/4):165–414, 1994.

